stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE

ZN 32/70

JUNE

J. VAN DER SLOT A NOTE ON PERFECT IRREDUCIBLE MAPPINGS

ZW

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH CENTRUM
AMSTERDAM

by

J. van der Slot

Until explicitly stated all spaces considered here are assumed to be regular.

INTRODUCTION. Let X be a space and U an open base for X which is closed for the taking of finite intersections. Then we can consider the collection X_{U}^{*} consisting of all maximal centered systems of members of U. By defining $U^{*} = \{ \mu \in X_{U}^{*} \mid U \in \mu \}$ we get a Hausdorff topology on X_{U}^{*} and a natural irreducible continuous map i of a dense subspace X_{U}^{*} (consisting of those $\mu \in X_{U}^{*}$ for which $\cap \{\overline{U} \mid U \in \mu\} \neq \emptyset$) onto X, sending each $U^{*} = U' \cap X_{U}^{*}$ onto \overline{U} . We shall derive necessary and sufficient conditions on U in order that the induces map of X_{U} onto X is perfect.

Moreover, let f be a perfect and irreducible map of a space X onto a space Y and \overline{U} , \overline{U} open bases for X and Y respectively, closed for the taking of finite intersections and such that $\overline{U} = \{f(\overline{U}) \mid U \in U\}$. (It is well known that if \overline{U} is closed for finite unions then the collection $\{Y \setminus f(X \setminus U) \mid U \in U\}$ is such a base). We will show that there is a natural homeomorphism of X_U onto Y_U sending each U onto V if $f(\overline{U}) = \overline{V}$, and which maps X_U onto Y_U .

In the sequal U is a base for the space X which is <u>closed for finite intersections</u>. By greek letters we denote maximal centered families of elements of U. We set $X_U = \{\mu \mid \mu \text{ maximal centered system of elements of } U$ and for $U \in U$ $U' = \{\mu \in X_U' \mid U \in \mu\}$. Furthermore, $X_U = \{\mu \in X_U' \mid \cap \{\overline{U} \mid U \in \mu\} \neq \emptyset\}$ and $U^* = U' \cap X_U$

PROPOSITION 1. a) The collection W for $U \in W$ is a base for a (Hausdorff)topology on X_{W}^{\bullet} . Moreover, for each $U_{1}, \ldots, U_{n} \in W$ we have $(U_{1}^{\circ}, \ldots, U_{n}^{\circ})' = U_{1}^{\circ} \cap \ldots \cap U_{n}^{\circ}$. Each centered system of members of W

has non-empty intersection.

,

- b) Each U' is open and closed i.e. X' is zerodimensional.
- c) The natural mapping i which assigns to each $\mu \in X_{\text{fl.}}$ the point $i(\mu) = \cap \{\overline{U} \mid U \in \mu\} \text{ of } X \text{ is continuous, irreducible and sends each } U^* \text{ onto } \overline{U}.$

PROOF. It is obvious that for each $U_1, \ldots, U_n \in \mathcal{U}$ we have $(U_1 \cap \ldots \cap U_n)' = U_1' \cap \ldots \cap U_n'$ because \mathcal{U} is closed for finite intersections. Thus \mathcal{U} is a base for a topology on X_U' . Now, let $\mathcal{U}_1' = \{U' \mid U \in \mathcal{U}_1 \subset \mathcal{U}\}$ be a centersystem of elements of \mathcal{U} . One easily verifies that \mathcal{U}_1 is a centered family of members of \mathcal{U} ; hence \mathcal{U}_1 is contained in some $\mu \in X_U'$. It follows $\mu \in \mathcal{U}_1'$.

- b) The fact that each centered family of members of W has non empty intersections in X_{W}^{\prime} implies that each U^{\prime} is open and closed in X_{W}^{\prime}
- c) We shall first prove that $i(U^*) = \overline{U}$ for each $U \in W$. If $p \in i(U^*)$, then clearly $p \in \overline{U}$. Conversely, if $p \in \overline{U}$ then the neighbourhood system consisting of all $U \in W$ containing p, together with U is contained in some maximal centered system μ of X_W . Hence $i(\mu) = p$. To prove the continuity of i, let $i(\mu) = p \in X$. Let U be a member of W containing p and $V \in W$ be such that $p \in V \subseteq \overline{V} \subseteq U$. Clearly $\mu \in V^*$ and $i(V^*) = \overline{V} \subseteq U$. To prove that i is irreducible, let S be closed in X. If $S \neq X_W$ there is $U \in W$ such that $U^* \cap S = \emptyset$; $U \neq \emptyset$. Let $p \in U$, then $i^{-1}(p) \subseteq U^*$; hence $p \notin i(S)$.

We shall recall one more proposition which we shall use later. With the notation of proposition 1 we have

PROPOSITION 2. If $V \in \mathcal{U}$ and \mathcal{U}_{1} is a subcollection of \mathcal{U}_{2} such that $V \subset \cup \mathcal{U}_{1}$, then $V' \subset \cup \mathcal{U}_{1}'$. If \mathcal{U}_{1} is finite, then $V' \subset \cup \mathcal{U}_{1}'$.

PROOF. Let $\mu \in V'$ and suppose, on the contrary, that $\mu \notin \overline{U} \overline{W}_1$. Hence there exists $W \in \mu$ such that $W' \cap (UW_1) = \emptyset$, i.e. $W \cap U = \emptyset$ and also $W \cap \overline{U} = \emptyset$ for each $U \in \overline{U}_1$. It follows $W \cap (U\overline{U}_1) = \emptyset$. Since $V \subset U$ we have $V \cap W = \emptyset$ which is impossible.

COROLLARY. If \mathcal{U} is the collection of all open subsets of X, then the closure in $X_{\mathcal{U}}$ of each open set of $X_{\mathcal{U}}$ is open. Indeed, if 0 is open in $X_{\mathcal{U}}$ then $0 = \cup \mathcal{U}_1'$ for some subcollection \mathcal{U}_1 of \mathcal{U}_1 ; hence $\overline{0} = \overline{\cup \mathcal{U}_1'} \supset (\cup \mathcal{U}_1)' \supset \cup \mathcal{U}_1' = 0$. Because $(\cup \mathcal{U}_1)'$ is closed the statement follows. Thus we conclude that $\underline{\text{in the case that } \mathcal{U}}$ is the collection of all open subsets of X, then $X_{\mathcal{U}}'$ (and also $X_{\mathcal{U}}$) is extremely disconnected.

<u>DEFINITION</u>. Let U_1 and U_2 be collections of subsets of a space X. We shall write $U_1 * U_2 = \emptyset$ in case that for each $U_1 \in U_1$ there is $U_2 \in U_2$ such that $U_1 \cap U_2 = \emptyset$ and conversely with U_1 and U_2 interchanged.

<u>DEFINITION</u>. Let U be a base for a space X. U is called <u>semi-complemented</u> provided that given $U_1 \subset U$ and p is a boundary point of each $\overline{U}_1 \cup \ldots \cup \overline{U}_n$ ($U_i \in U_i$) then these exists a subcollection $U_2 \subset U$ such that $U_1 * U_2 = \emptyset$ and p is a boundary point of each $V_1 \cap \ldots \cap V_n \in U_2$).

If U is a complemented base for X (i.e. $U \in U$ implies $X \setminus \overline{U} \in U$) then U is semicomplemented. It is also easy to prove that if U is a semiring (i.e. $U \in U$, $V \in U \Rightarrow U \setminus \overline{V} \in U$) then U is also semicomplemented. If each $U \in U$ is open and closed then U is semicomplemented.

<u>DEFINITION</u>. A mapping f of a space X onto a space Y is called <u>perfect</u> provided that it is continuous, closed (the images of closed sets are closed) and the preimage of points of Y are compact. f is called <u>irreducible</u> provided that $f(S) \neq Y$ for each proper closed subset S of X.

Hereafter we will show that under very general hypotheses on a base U (namely U be semicomplemented) the induced mapping i: $X_U \rightarrow X$ defined on page 1 is perfect and irreducible.

First we mention a few properties of such mappings.

PROPOSITION 4. Let f be an irreducible continuous map of a space X onto a space Y. If 0 is open in X, then $\overline{f(0)} = \overline{Y \setminus f(X \setminus 0)}$.

PROOF. It suffices to show that $\overline{f(0)} \subset \overline{Y \setminus f(X \setminus 0)}$. It is evident that $f[X \setminus 0 \cup f^{-1}(Y \setminus f(X \setminus 0))] = Y$, and since f is an irreducible map, it follows that $(X \setminus 0) \cup f^{-1}(Y \setminus f(X \setminus 0)) = X$, i.e., $0 \in f^{-1}(Y \setminus f(X \setminus 0))$. Thus $\overline{f(0)} \in \overline{Y \setminus f(X \setminus 0)}$.

PROPOSITION 5. Let f be a perfect mapping of X onto Y. If W is a base for X which is closed under the taking of finite unions, then the collection $\{Y \setminus f(X \setminus U) \mid U \in W\}$ is an open base for Y.

PROOF. This is well known (see e.g. [2] or [5]).

PROPOSITION 6. Let f be a perfect irreducible map of X onto Y; \mathbb{U} a base for X consisting of open and closed subsets and \mathbb{V} a base of Y such that $\overline{\mathbb{V}} = \{f(\mathbb{U}) \mid \mathbb{U} \in \mathcal{U}\}$. Then \mathbb{V} is semicomplemented.

PROOF. Let $y \in Y$ and y be a boundary point of each $\overline{V}_1 \cup \ldots \cup \overline{V}_n$ where V_1, \ldots, V_n run through a subcollection V_1 of V. For $V \in V$ let $U(V) \in \mathcal{U}$ be such that $f(U(V)) = \overline{V}$. We propose that the collection $f^{-1}(Y) \cap \{X \setminus U(V) \mid V \in V_1\}$ is a centered system. Indeed, if $V_1, \ldots, V_n \in V_1$ then

$$y \in Y \setminus \bigcup \{f(U(V_i)) | i=1,2,...,n\} = Y \setminus f(\bigcup \{U(V_i) | i=1,2,...,n\}) = f(X \setminus \bigcup \{U(V_i) | i=1,2,...,n\} \} = f(X \setminus \bigcup \{U(V_i) | i=1,2,...,n\} \} \neq \emptyset.$$

The compactness of $f^{-1}(y)$ yields the existence of a point $q \in \cap \{X \setminus U(V) \mid V \in \mathcal{Y}_1\} \cap f^{-1}(y)$. For each $V \in \mathcal{Y}_1$ let W(V) be an element of U such that $q \in W(V) \subset X \setminus U(V)$. And $V' \in \mathcal{Y}$ be such that $\overline{V'} = f(W(V))$. We will show that $\mathcal{Y}_2 = \{V' \mid V \in \mathcal{Y}_1\}$ satisfies the desired conditions. Obviously $V \cap V' = \emptyset$ since $Y \setminus f(X \setminus U(V)) \cap Y \setminus f(X \setminus W(V)) = \emptyset$ so $\mathcal{Y}_2 * \mathcal{Y}_1 = \emptyset$. We will show that $Y \setminus f(X \setminus U(V)) \cap Y \setminus f(X \setminus W(V)) = \emptyset$ so $\mathcal{Y}_2 * \mathcal{Y}_1 = \emptyset$. We will show that $Y \setminus f(X \setminus U(V)) \cap Y \setminus f(X \setminus W(V)) = \emptyset$ so $\mathcal{Y}_2 * \mathcal{Y}_1 = \emptyset$.

is a boundary point of each $V_1' \cap \dots \cap V_n'$. Indeed, $y \in f(\cap\{W(V_1)|i=1,\dots,n\}) = \bigcap\{Y \setminus f(X\setminus W(V_1)|i=1,\dots,n\}\} = \bigcap\{V_1' \mid i=1,\dots,n\}$. We also have $\cap\{Y \setminus f(X\setminus W(V_1))|i=1,\dots,n\}$. $\bigcap\{Y \setminus f(X\setminus W(V_1))|i=1,\dots,n\} = \emptyset$. So $y \notin \cap\{Y \setminus f(X\setminus W(V_1))|i=1,\dots,n\}$ i.e. $y \notin \cap\{V_1' \mid i=1,\dots,n\}$. This completes the proof of the proposition.

THEOREM 1. Let W be a base for a space X and let W be closed under the taking of finite intersections. Let i be the natural continuous map of XW onto X. Then i is perfect if and only if W is semicomplemented.

PROOF. The "only if" part has already been proved in the foregoing proposition. To prove the "if" part we shall first show that i-1(p) is compact for each p of X. Let $\{X_{u} \setminus U^* | U \in U_1\} \cap i^{-1}(p)$ be a centered system of members of Xu\u^*. We may suppose that Xu\ U* \neq i⁻¹(p) for each $U \in U_1$. Then p is a boundary point of each $\cup \{\overline{U}_i \mid i = 1, ..., n\}$ $(U_i \in U_1)$. Indeed, $i^{-1}(p) \cap U_i^* \neq \emptyset$ for all i, so $p \in \overline{U_i} \mid i = 1, ..., n$. We also have $p \notin \text{int } \cup \{\overline{U}_i | i = 1, ..., n\}$, because otherwise there is $V \in U$ containing p such that $V \subset U \{\overline{U}_i | i = 1, ..., n\}$. Hence $V^* \subset U_i^* | i = 1, ..., n$ (prop. 2) which is impossible since $i^{-1}(p) \subset V^*$. Because \mathcal{U}_{i} is semicomplemented there exists $\mathcal{U}_{i} \subset \mathcal{U}_{i}$ such that $\mathcal{U}_{i} * \mathcal{U}_{i} = \emptyset$ and such that p is a boundary point of each $\cap \{V_i | i = 1, ..., n\}(V_i \in U_p)$. Let $U(p) = \{U \in U | p \in U\}$, then $U(p) \cup U_2$ is centered and is contained in some $\mu \in X_{\mathbf{U}}$. We propose $\mu \in \cap \{X_{\mathbf{U}} \setminus \mathbf{U}^* | \overset{-}{\mathbf{U}} \in \mathbf{U}_1\} \cap \mathbf{i}^{-1}(p)$. $\mu \in \mathbf{i}^{-1}(p)$ is obvious, and since for each $U \in U_1$ there is $V \in U_2$ such that $V \cap U = \emptyset$ μ cannot belong to some U^* for $U \in U_1$. Thus we have proved that $i^{-1}(p)$ is compact for each $p \in X$.

We shall now prove that i is a closed mapping. Let S be closed in X and p ϵ $\overline{f(S)}$. Let us suppose that p ϵ f(S). Thus $i^{-1}(p) \cap S = \emptyset$. We have just proved that $i^{-1}(p)$ is compact, so there are U_i , $i = 1, \ldots, n$ such that $i^{-1}(p) \subset \cup \{U_i^* | i = 1, \ldots, n\}$ and $U_i^* \cap S = \emptyset$ for all i. We shall first prove that p is a boundary point of $\cup \{\overline{U_i} | i = 1, \ldots, n\}$. It is clear that p $\epsilon \cup \{\overline{U_i} | i = 1, \ldots, n\}$. Let us suppose that p ϵ int $\cup \{\overline{U_i} | i = 1, \ldots, n\}$. Hence there exists V ϵ W such that

p ϵ V \subset U $\{\overline{U}_i \mid i=1,\ldots,n\}$. Thus $i^{-1}(p) \subset V^* \subset \cup \{U_i^* \mid i=1,\ldots,n\}$ (prop 2). Since $\mu \notin V^*$ implies that there is W ϵ W such that W \cap V = Ø; hence $i(\mu) \in \overline{W} \subset X \setminus \overline{V}$, it follows that $\overline{f(S)} \subset \overline{X} \setminus \overline{V}$. However, $p \notin \overline{X} \setminus \overline{V}$, contradicting $p \in \overline{f(S)}$. We conclude that p is a boundary point of $\cup \{\overline{U}_i \mid i=1,\ldots,n\}$. Since U is semicomplemented there are $V_1,\ldots,V_n \in U$ such that $V_i \cap U_i = \emptyset$ (i=1,...,n) and $p \in \overline{\cap \{V_i \mid i=1,\ldots,n\}}$. Let μ be a member of $i^{-1}(p)$ that contains the collection $\{V_i \mid i=1,\ldots,n\}$; then $\mu \in U_i^*$ for some 1 (1 \leq 1 \leq n) i.e. $U_1 \in \mu$. However $U_1 \cap V_1 = \emptyset$ gives a contradiction. This completes the proof of the theorem.

EXAMPLE 1. Consider the real numbers $\mathbb R$ with the usual order topology. Consider two bases $\mathbb U_1$ and $\mathbb U_2$ for $\mathbb R$.

1°
$$W_1 = \{(a,b) \mid a, b \text{ are rational}\}$$

2°
$$\mathbb{U}_2 = \{(a,b) \mid a \text{ is rational}; b \text{ is irrational}\}.$$

Both U_1 and U_2 are closed for finite intersections. However, U_2 is not semicomplemented, since for each U_1 , $U_2 \in U_2$, $U_1 \cap U_2 = \emptyset$ implies $\overline{U}_1 \cap \overline{U}_2 = \emptyset$. The mapping i is one to one; i is not perfect because it would then be a homeomorfism, which is impossible since $\mathbb R$ is not zero-dimensional.

The base \mathbb{U}_1 for \mathbb{R} is semicomplemented, hence $\mathbb{R}_{\mathbb{U}_1}$ is mapped perfectly onto \mathbb{R} .

EXAMPLE 2. Let X be a metric space. For i = 1, 2, ... there are locally finite open collections W_i of X, consisting of regularly open sets with the following properties:

- a) the members of U_i , $i = 1, 2, \ldots$ are disjoint; $\overline{U_i}$ covers X.
- b) \overline{u}_{i+1} refines \overline{u}_{i} .
- c) diam $u_i < \frac{1}{i}$.

If we consider the base U for X consisting of all interiors of finite unions of members of \overline{U}_i for i = 1, 2, ..., then it is easy to see that

Wis closed for finite intersections and is semicomplemented. Thus X is mapped perfectly onto X and it is easy to see that X is metrizable with covering dimension zero. Thus we have proved that each metrizable space is the image of a zerodimensional metrizable space under a perfect irreducible mapping (this is a well known result of Morita [5]).

THEOREM 2. Let f be a perfect irreducible map of a space X onto a space Y. Let U, V be bases for X and Y, respectively, closed for finite intersections and such that $\{f(\overline{U}) | U \in U\} = \overline{V}$. With the notation of proposition 1 there is a homeomorfism f^* of X_U onto Y_U which takes X_U onto Y_U and such that $f^*(U^*) = V^*$ for each $(U,V) \in (U,V)$ with the property $f(\overline{U}) = \overline{V}$.

In our proof we make use of the following lemma

<u>LEMMA</u>. Let f, X, Y, $\mathbb U$ and $\mathbb V$ satisfy the above conditions. If $\mathbb U_i$, $i=1,\ldots,n$ and $\mathbb V_i$, $i=1,\ldots,n$ are finite subcollections of $\mathbb U$ and $\mathbb V$, respectively such that $f(\overline{\mathbb U}_i) = \overline{\mathbb V}_i$ then $\cap \{\mathbb U_i \mid i=1,\ldots,n\} = \emptyset$ is equivalent with $\cap \{\mathbb V_i \mid i=1,\ldots,n\} = \emptyset$.

PROOF. $\cap \{U_i \mid i = 1, ..., n\} = \emptyset$ is equivalent with $\cap \{Y \setminus f(X \setminus U_i) \mid i = 1, ..., n\} = \emptyset$, by the irreducibility of f. Because $\overline{Y \setminus f(X \setminus U_i)} = \overline{V_i}$ the statement follows.

<u>Proof of the theorem</u>: Let $\mu \in X_{W}$. Then μ is a maximal centered system U_{η} of members of U. Let $V_{\eta} = \{V \in V | f(\overline{U}) = \overline{V} \text{ for some } U \in U_{\eta}\}$. One easily verifies (using the previous lemma) that V_{η} is a maximal centered system of members of V, so V_{η} defines an element $\nu = f^{\star}(\mu)$ of Y_{W} . We will show that f^{\star} satisfies all required conditions.

If $U \in U$ and $V \in V$ satisfy $f(\overline{U}) = \overline{V}$, then $\mu \in U'$ implies $U \in \mu$ and also $V \in f^*(\mu)$, i.e. $f^*(\mu) \in V'$. On the other hand $\mu \notin U'$ implies $U \notin \mu$; so there is $U_1 \in \mu$ such that $U \cap U_1 = \emptyset$. If $V_1 \in V'$ satisfies $f(\overline{U}_1) = \overline{V}_1$, then we have by the previous lemma $V \cap V_1 = \emptyset$, i.e. $f^*(\mu) \notin V'$. Thus we have proved $f^*(\mu) \in V'$ if and only if $\mu \in U'$, hence f^* is continuous.

 f^* is an onto-mapping: Indeed, if $v \in Y_U$, and $U_1 = \{U \in U \mid f(\overline{U}) \in \overline{v}\}$, then U_1 is a maximal centered system μ of members of U, which is mapped onto v by f^* .

 $f^* \text{ is one-to-one: } \text{If } \mu_1 \neq \mu_2 \in X_0' \text{ then there are } U_1, U_2 \in U$ such that $\mu_1 \in U_1', \mu_2 \in U_2'$ and $U_1 \cap U_2 = \emptyset$. Let $V_1, V_2 \in \mathcal{Y}$ satisfy $f(\overline{U}_1) = \overline{V}_1$ and $f(\overline{U}_2) = \overline{V}_2$. Then $V_1 \cap V_2 = \emptyset$ and $V_1' \cap V_2' = \emptyset$. Since $f^*(\mu_1) \in V_1'$ and $f^*(\mu_2) \in V_2'$ we have $f^*(\mu_1) \neq f^*(\mu_2)$.

The only which remains to show is that f^* maps $X_{\mathbb{U}}$ onto $Y_{\mathbb{Q}}$. (Then we have also proved that $f^*(U^*) = V^*$ if $f(\overline{U}) = \overline{V}$ ($U \in \mathbb{U}, V \in \mathbb{V}$).) If $\mu \in X_{\mathbb{U}}$ then $\cap : \{\overline{U} | U \in \mu\} \neq \emptyset$ and also $\cap \{f(\overline{U}) | U \in \mu\} \neq \emptyset$. Thus $f^*(\mu) \in Y_{\mathbb{Q}}$. Conversely, if $v \in Y_{\mathbb{Q}}$ then $\cap \{\overline{V} | V \in v\} \neq \emptyset$. Let $\mathbb{U}_1 = \{U \in \mathbb{U} | f(\overline{U}) \in \overline{v}\}$. As before, \mathbb{U}_1 is a maximal centered system of elements of \mathbb{U} and we only need to show that $\cap \overline{\mathbb{U}}_1 \neq \emptyset$. Let $p = \cap \{\overline{V} | V \in v\}$ then $\{\overline{U} \cap f^{-1}(p) | U \in \mathbb{U}_1\}$ is centered because for each $U_1, \ldots, U_n \in \mathbb{U}_1$ we have $p \in f(\overline{\cap \{U_1 | i = 1, \ldots, n\}) \subset f(\overline{\cap \{U_1 | i = 1, \ldots, n\})}$. Compactness of $f^{-1}(p)$ yields indeed $\cap \overline{\mathbb{U}}_1 \neq \emptyset$.

 $\underline{\text{N.B.}}$ If each member of W is open and closed, then X_{W} is homeomorphic with X. In that case f^* establishes a homeomorphism of X onto Y_{W} .

REMARK. Let X be a space and let (9 be the collection of all open subsets. In the literature X is called the absolute of X. X is extremely disconnected and is mapped perfectly onto X (see also [2], [4] and [6]). Two spaces which have homeomorphic absolutes are called coabsolute. If Y is a perfect irreducible image of X then X and Y are coabsolute. Furthermore, the property of being coabsolute is transitive, i.e. if X and Y are coabsolute; Y and Z are coabsolute, then X and Z are coabsolute.

REFERENCES

[1]	R. Engelking	Outline of General Topology, North Holland Publishing Co. Amsterdam, 1968.
[2]	S. Iliadis	Absolutes of Hausdorff spaces, Dokl. Akad. Nauk SSSR 149(1963), 22 = Soviet Math. Dokl. 4(1963), 295-298.
[3]	J.L. Keley	General Topology, Van Nostrand, 1955.
[4]	A. Gleason	Projective Topological Spaces, Ill. Journ. of Math. Vol. 2(1958), 482-489.
[5]	J. Nagata	Modern General Topology, North Holland Publishing Co. Amsterdam, 1968.
[6]	V.I. Ponomarev	On the absolute of a topological space, Dokl. Akad. Nauk SSSR 149(1963), 26-29 \approx Soviet Math. Dokl. $\frac{1}{4}$ (1963), 299-302.
[7]	J. van der Slot	Some Properties related to compactness, Doct. Diss. Amsterdam, 1968.